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Overview 

•  Concepts & Background 
– MapReduce and Hadoop  

•  Hadoop Ecosystem 
– Tools on top of Hadoop 

•  Hadoop for Science  
– Examples, Challenges 

•  Programming in Hadoop 
– Building blocks, Streaming, C-HDFS API 
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Processing Big Data 

•  Internet scale generates BigData 
– Terabytes of data/day 
–  just reading 100 TB can be overwhelming 

•  using clusters of standard commodity 
computers for linear scalability 

•  Timeline 
– Nutch open source search project 

(2002-2004) 
– MapReduce & DFS implementation and 

Hadoop splits out of Nutch (2004-2006)  
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MapReduce 

•  Computation performed on large 
volumes of data in parallel 
– divide workload across large number of 

machines 
– need a good data management scheme to 

handle scalability and consistency 
•  Functional programming concepts 

– map 
– reduce 
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Mapping 

•  Map input to an output using some 
function   

•  Example 
– string manipulation 
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Reduces 

•  Aggregate values together to provide 
summary data 

•  Example 
– addition of the list of numbers 
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Google File System 

•  Distributed File System 
– accounts for component failure 
– multi-GB files and billions of objects 

•  Design 
– single master with multiple chunkservers 

per master 
–  file represented as fixed-sized chunks 
– 3-way mirrored across chunkservers 

7 



Hadoop 

•  Open source reliable, scalable distributed 
computing platform 
–  implementation of MapReduce 
–  Hadoop Distributed File System (HDFS) 
–  runs on commodity hardware 

•  Fault Tolerance 
–  restarting tasks 
–  data replication 

•  Speculative execution 
–  handles stragglers  
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HDFS Architecture 
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HDFS and other Parallel 
Filesystems 

HDFS GPFS and Lustre 
Typical Replication 3 1 
Storage Location Compute Node Servers 
Access Model Custom (except with 

Fuse) 
POSIX 

Stripe Size 64 MB 1 MB 
Concurrent Writes No Yes 
Scales with # of Compute Nodes # of Servers 
Scale of Largest 
Systems 

O(10k) Nodes O(100) Servers 

User/Kernel Space User Kernel 



Who is using Hadoop? 

•  A9.com  
•  Amazon 
•  Adobe 
•  AOL 
•  Baidu 
•  Cooliris 
•  Facebook 
•  NSF-Google 

university initiative 

•  IBM 
•  LinkedIn 
•  Ning 
•  PARC 
•  Rackspace 
•  StumbleUpon 
•  Twitter 
•  Yahoo! 
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Hadoop Stack 

Core Avro 

MapReduce HDFS 

Pig Chukwa Hive HBase 

Source: Hadoop: The Definitive Guide 

Zoo 
Keeper 
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Google Vs Hadoop 

Google Hadoop 
MapReduce Hadoop MapReduce 
GFS HDFS 
Sawzall Pig, Hive 
BigTable Hbase 
Chubby Zookeeper 
Pregel Hama, Giraph 
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Pig 

•  Platform for analyzing large data sets 
•  Data-flow oriented language “Pig Latin” 

– data transformation functions  
– datatypes include sets, associative arrays, 

tuples 
– high-level language for marshalling data 

•  Developed at Yahoo!  
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Hive 

•  SQL-based data warehousing 
application 
–  features similar to Pig  
– more strictly SQL-type 

•  Supports SELECT, JOIN, GROUP BY, 
etc 

•  Analyzing very large data sets 
–  log processing, text mining, document 

indexing  
•  Developed at Facebook 
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HBase 

•  Persistent, distributed, sorted, 
multidimensional, sparse map 
– based on Google BigTable 
– provides interactive access to information 

•  Holds extremely large datasets (multi-
TB) 

•  High-speed lookup of individual (row, 
column) 
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ZooKeeper 

•  Distributed consensus engine 
– runs on a set of servers and maintains 

state consistency 
•  Concurrent access semantics 

–  leader election 
– service discovery 
– distributed locking/mutual exclusion 
– message board/mailboxes 
– producer/consumer queues, priority 

queues and multi-phase commit 
operations 
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Other Related Projects [1/2] 

•  Chukwa – Hadoop log aggregation 
•  Scribe – more general log aggregation 
•  Mahout – machine learning library 
•  Cassandra – column store database on a P2P 

backend 
•  Dumbo – Python library for streaming 
•  Spark – in memory cluster for interactive and 

iterative  
•  Hadoop on Amazon – Elastic MapReduce 
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Other Related Projects [2/2] 

•  Sqoop – import SQL-based data to Hadoop  
•  Jaql – JSON (JavaScript Object Notation) 

based semi-structured query processing 
•  Oozie – Hadoop workflows 
•  Giraph – Large scale graph processing on 

Hadoop 
•  Hcatlog – relational view of HDFS 
•  Fuse-DS – POSIX interface to HDFS 
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Hadoop for Science 
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Magellan and Hadoop 

•  DOE funded project to determine 
appropriate role of cloud computing for 
DOE/SC midrange workloads 

•  Co-located at Argonne Leadership 
Computing Facility (ALCF) and National 
Energy Research Scientific Center 
(NERSC)   

•  Hadoop/Magellan research questions 
– Are the new cloud programming models 

useful for scientific computing?  

–    
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Data Intensive Science 

•  Evaluating hardware and software 
choices for supporting next generation 
data problems 

•  Evaluation of Hadoop 
– using mix of synthetic benchmarks and 

scientific applications 
– understanding application characteristics 

that can leverage the model  
•  data operations: filter, merge, reorganization  
•  compute-data ratio  
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MapReduce and HPC 

•  Applications that can benefit from 
MapReduce/Hadoop 
– Large amounts of data processing 
– Science that is scaling up from the 

desktop 
– Query-type workloads 

•  Data from Exascale needs new 
technologies  
– Hadoop On Demand lets one run Hadoop 

through a batch queue 
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Hadoop for Science 

•  Advantages of Hadoop  
–  transparent data replication, data locality 

aware scheduling 
–  fault tolerance capabilities 

•  Hadoop Streaming 
– allows users to plug any binary as maps 

and reduces 
–  input comes on standard input 
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BioPig  

•  Analytics toolkit for Next-Generation 
Sequence Data 

•  User defined functions (UDF) for 
common bioinformatics programs 
– BLAST, Velvet 
– readers and writers for FASTA and FASTQ 
– pack/unpack for space conservation with 

DNA sequenceså 
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Application Examples 

•  Bioinformatics applications (BLAST) 
– parallel search of input sequences 
– Managing input data format 

•  Tropical storm detection 
– binary file formats can’t be handled in 

streaming 
•  Atmospheric River Detection  

– maps are differentiated on file and 
parameter 
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HDFS vs GPFS (Time) 
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•  Wikipedia data set 
•  On ~ 75 nodes, 

GPFS performs 
better with large 
nodes 

Application Characteristic Affect 
Choices 
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•  Deployment 
–  all jobs run as user “hadoop” affecting file 
permissions 
–  less control on how many nodes are used - 
affects allocation policies 

•  Programming: No turn-key solution 
–  using existing code bases, managing input 
formats and data  

•  Additional benchmarking, tuning 
needed, Plug-ins for Science  

Hadoop: Challenges 

29 



Comparison of MapReduce 
Implementations 
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Programming Hadoop 
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•  Maps and reduces handle key value 
pairs 
•  Write Map and reduce as Java 
programs using Hadoop API 
•  Pipes and Streaming can help with 
existing applications in other 
languages 
•  Higher-level languages such as Pig 
might help with some applications 
•  C- HDFS API 

Programming with Hadoop 
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Keys and Values 

•  Maps and reduces produce key-value 
pairs 
– arbitrary number of values can be output 
– may map one input to 0,1, ….100 outputs  
– reducer may emit one or more outputs 

•  Example: Temperature recordings 
– 94089  8:00 am, 59 
– 27704  6:30 am, 70 
– 94089 12:45 pm, 80 
– 47401   1 pm, 90  
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Keys divide the reduce space 
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Data Flow 
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Mechanics[1/2] 

•  Input files 
–  large 10s of GB or more, typically in HDFS 
–  line-based, binary, multi-line, etc. 

•  InputFormat 
–  function defines how input files are split up and 

read 
–  TextInputFormat (default), KeyValueInputFormat, 

SequenceFileInputFormat 
•  InputSplits 

–  unit of work that comprises a single map task 
–  FileInputFormat divides it into 64MB chunks 
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Mechanics [2/2] 

•  RecordReader 
–  loads data and converts to key value pair 

•  Sort & Partiton & Shuffle 
–  intermediate data from map to reducer 

•  Combiner 
– reduce data on a single machine 

•  Mapper & Reducer 
•  OutputFormat, RecordWriter 
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 public static class TokenizerMapper  
       extends Mapper<Object, Text, Text, IntWritable>{  
    private final static IntWritable one = new IntWritable(1); 
    private Text word = new Text(); 

    public void map(Object key, Text value, Context context 
                    ) throws IOException, InterruptedException { 
      StringTokenizer itr = new StringTokenizer(value.toString()); 
      while (itr.hasMoreTokens()) { 
        word.set(itr.nextToken()); 
        context.write(word, one); 
      } 
    } 
  } 

Word Count Mapper 
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 public static class IntSumReducer   
    extends Reducer<Text,IntWritable,Text,IntWritable> { 
    private IntWritable result = new IntWritable(); 

    public void reduce(Text key, Iterable<IntWritable> values,                       
Context context) throws IOException, InterruptedException { 
      int sum = 0; 
      for (IntWritable val : values) { 
        sum += val.get(); 
      } 
      result.set(sum); 
      context.write(key, result); 
    } 
  } 

Word Count Reducer 
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public static void main(String[] args) throws Exception { 
    Configuration conf = new Configuration(); 
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); 
   …. 
    Job job = new Job(conf, "word count"); 
    job.setJarByClass(WordCount.class); 
    job.setMapperClass(TokenizerMapper.class); 
    job.setCombinerClass(IntSumReducer.class); 
    job.setReducerClass(IntSumReducer.class); 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
    FileInputFormat.addInputPath(job, new Path(otherArgs[0])); 
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); 
    System.exit(job.waitForCompletion(true) ? 0 : 1); 

} 

Word Count Example 
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•  Allows C++ code to be used for 
Mapper and Reducer 
•  Both key and value inputs to pipes 
programs are provided as std::string 
•  $ hadoop pipes 

Pipes 
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•  Limited C API to read and write from HDFS 
#include "hdfs.h"  
int main(int argc, char **argv)  
{ 
  hdfsFS fs = hdfsConnect("default", 0);  
  hdfsFile writeFile = hdfsOpenFile(fs, writePath, 

O_WRONLY|O_CREAT, 0, 0, 0);  
   tSize num_written_bytes = hdfsWrite(fs, writeFile, 

(void*)buffer, strlen(buffer)+1); 
  hdfsCloseFile(fs, writeFile);  
 }   

C-HDFS API 
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•  Generic API that allows programs in 
any language to be used as Hadoop 
Mapper and Reducer implementations 
•  Inputs written to stdin as strings with 
tab character separating  
•  Output to stdout as key \t value \n 
•  $ hadoop jar contrib/streaming/
hadoop-[version]-streaming.jar 

Hadoop Streaming 
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•  Test core functionality separate 
•  Use Job Tracker 
•  Run “local” in Hadoop 
•  Run job on a small data set on a 
single node 
•  Hadoop can save files from failed 
tasks 

Debugging 
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Questions? 

Magellan Website: 
http://magellan.nersc.gov 

Lavanya Ramakrishnan 
LRamakrishnan@lbl.gov 
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